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Outline

 Motivation of HEP muon colliders
e Collider table from MAP

* Final cooling channel (possible “game changer”)

o 30-Tesla solenoid channel

o Parametric resonance lonization Cooling channel (introduce low emittance
scheme)

* Beam component with low emittance scheme
* Extend COM and Luminosity for 10 TeV MC (Neuffer’s speculation)

* Summary



Physics in HEP muon collidert!

Equivalent COM energy of uu and pp Cross section of various HEP events in uu
VBF = Vector boson fusion
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uu is one of the best tools to study Beyond Standard Model

We’ve already seen violations of the SM in LHCb and g-2 experiments!
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Scenarios from Muon Accelerator Program

Table 1: Main parameters of the proton driver muon facilities

Parameter Units Higgs
CoM Energy TeV 0.126 1.5
Avg. Luminosity 103%cm=2s~t  0.008  1.25
Beam Energy Spread v 0.004 0.1
Higgs Production/107 sec 13’500 377500
Circumference km 0.3 2.5
No. of IP’s 1 2
Repetition Rate Hz 15 15
.y cm 1.7 1
No. muons/bunch 1012 4 2
Norm. Trans. Emittance, epn pm-rad 200 25
Norm. Long. Emittance, 1N pm-rad 1.5 70
Bunch Length, og cm 6.3 1
Proton Driver Power MW 4 4
Wall Plug Power MW 200 216
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Beam components are designed to realize COM energy and Luminosity
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MAP baseline design

Decay process is involved in an efficiency calculation /

Cooling

Transmission efficiency of 6D cooling is 20 %

Proton Driver Front End Cooling Acceleration Collider Ring
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Proton driver Front End Acceleration & Collider Ring

4 Mega-Watt 8 GeV protons
N, = 3.13E15 protons on target

Proton to muon conversion
efficiency is 10-15 % for each sign

Total transmission efficiency is 70-80 %
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In the next few slides, | will focus on the Final Cooling channel which is a
key element to improve the quality of muon beam




Final Cooling Channel (MAP baseline design)?

Matching coils LH, absorber
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30-Tesla solenoid channel

14 segments (10 m-long each)

Muons lose a kinetic energy to gain a low beta function
Transverse emittance goes down while longitudinal one
goes up (reverse emittance exchange)

Transmission is 50 %
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Introduce Parametric resonance lonization Cooling channel3
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Concept of PIC*

A

xx' = const * |onization cooling shrinks beam angular spread (x’).
 Conventional ionization cooling channel generates a
//\ ¥ low beta function with ordinally phase space oscillation
-/ ,.(

& (top left picture). Thus, a very strong magnetic field is

/ needed for a final cooling.

Ordinally 2D phase space Excited 2D phase space by

oscillation a half-integer resonance
L(Z+D)m * In PIC scheme, a half-integer resonance is applied to excite
Equilibrium beam size o2 = 8 52 me w2, the phase space in hyperbolic motion (top right picture).
K * As aresult, the achievable transverse emittance is lower
Equilibri lar di , 3Z+1Dm,
quilibrium angular dist. 65 = 2 Y82 my, than the conventional cooling channel, and independent
A\ 3(2+1D)m, 1 from strength of magnetic field

Equilibrium momentum sp. (_)

p/ 8 yB?> mylog’

B =v/c,y is alorentz factor, w is a thickness of cooling material,
log is the Coulomb logarithm.



Cooling simulation

Analytical estimation

Parameter Unit Initial Final
Muon beam momentum, p MeV/c 250 250
Number of particles per bunch, N, 10" 1 1

Be (Z = 4) absorber thickness, w mm 20 2
Normalized transverse emittance (rms), &, = &, um 230 23
Beam size at absorbers (rms), o, = 0, = g, mm 0.7 0.1
Angular spread at absorbers (rms), 6, = 6, = 6, mrad 130 130
Momentum spread (rms), Ap/p % 2 2
Bunch length (rms), o mm 10 10

Cooling simulation (no stochastic process)

0.1 g T 1 T . . . . .
e — e So far, the cooling simulation is made without
g, — . . .
0.01 | e stochastic process (no energy straggling, no multiple
= oo : scattering).
e . = . . . .
3 ; * Skew-PIC is the most up-to-date lattice, which realizes
S 0.0001 | a large dynamic aperture as designed.
w o
[ * Plasma focusing (see next slide) significantly mitigates
a: the aberration which is caused in a cooling absorber
16-06 L ' ' '
0 50 100 150 . 200
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Plasma focusing>

e Strong radial beam focusing will appear in a dense Hydrogen gas-filled RF cavity
o Space charge is neutralized by dielectric polarization of gas plasma, as a result, beam induces a toroidal self-focusing field

LI T T T T T v L T T T

..In Hydrogen gas b) 1
e "':_:.,'-—A.‘,‘:_..'. ) ]

i YA

0.005 -

1
o
o
=)
o

T

0
2
o
o
=]
[s)
I
L
o
[=)
o
S

-0.005

PO I T T 1

-0.005 o ‘ Green:electron-:
0.90 0.95 0.90 0.95

Z (m) Z
e Can this effect be adopted for cooling channel design?
* Easy to induce a resonance in a channel of azimuthally symmetric lenses
* Focal parameter of each lens must be less than 1/4% of the distance between adjacent lenses

* Will strong radial plasma focusing allow one to tame the beam smear and take advantage of parametric
resonance ionization cooling?
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Reverse emittance exchange®
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Transverse Emittance [mm]

. *¥2nd stage with high energy muons is proposed to obtain a positive
dEdx slope (upper limit is determined by energy straggling)
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Low emittance scheme and high transmission
efficiency

fcol'nuJ,'nu_',B'V

L
2, (Ey,n ' :B;)

Goal of low emittance scheme 4”(5x,n ' ﬁ;)

1/2

* &xyn = 25 prad 2 2 prad (Low emittance scheme)

* Transmission efficiency in 6D cooling=20% =2 >30 %

* Transmission efficiency in final cooling =50 % = > 70 %
* Luminosity = 25 X Original luminosity

* Use the luminosity gain to reduce the beam power



Proton Driver & Front end

Proton Driver Front End

MAP baseline m

E

* 4 Mega-Watt 8 GeV proton beam . N BsZ & B

g £ 2 £ (51579 8

* Hg target T ER-EEE 2 50 8 <

. “ 5 B d REE

Low emittance scheme g =8 &
p=

* Probably < 1 Mega-Watt 8 GeV proton beam
* Conventional graphite target will be available

* Maybe create pions outside capture solenoid which will significantly
mitigate radiological problems



CO O ‘ | n g MICE and MTA RF measurements are very positive for ionization cooling design

MAP baseline
Helical FOFO Snake channel” Rectilinear channel®
* Accept both sign muons * Alternate solenoid makes a
e Simple alternate solenoid beta function half
lattice * Initial engineering study
e Ready for initial engineering done
study * Cooling performance is
e Appropriate for Initial 6D limited by space charge
cooling

Low emittance scheme

* Significantly reduce space charge effect
* Matching issue will be mitigated if pions/muons
are not magnetized
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Helical channel®

Shortest length (high transmission)
No longitudinal limit because of
negative slip factor (no space charge
issue)

Extra transverse focusing by self-
induced toroidal field

Poor matching scheme

Cooling

6D Cooling
Final Cooling

=
(92

Initial 6D Cooling




Acceleration & Collider ring

MAP baseline
* Quick acceleration to minimize muon decay

* Challenge to accelerate a short bunch length
intense muon beam

* Decay electron & Neutrino radiation are
intrinsic issue

Low emittance scheme
* Space charge effect is reduced

* Muon lifetime still issue; quick acceleration
needed

* Decay electron & Neutrino radiation are still an
issue (though the risk is significantly reduced)
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Acceleration

Accelerators:
Linacs, RLA or FFAG, RCS

Collider Ring

16




Conceptual design study of Large bore Nb;Sn dipole magnet?©

17 Tesla dipole magnet BGO HcalEndc

BGO EcalBarr Iron MuonEndc
Cnli:::::::::::

-120-

BGO EcalEndc
_60_

' B | Tracker /

-
—1
JIA nﬁzl
0 I '|‘\I|
BCH
60- >

|
1.00x10° cm

8-T BCS1

Need W mask to ;otéct SC magnetso'o
at IR (This design*for 0.126}ev Fing)--

sk ats=24m

20-

Figure 1: Cross-sections of Design 1 and Design 2 coils \ / 5 : o o
with 120-mm aperture. R— 0 » 0010 g 00
4/14/2 1 H Igh Energy MC' TECh nology needs, Yoneha ra Figure 9. Tungsten mask at the IP end of the BCS1 8-T dipole (left) and power density isocontours iJf Zis

dipole (right). The ring center is to the right in these figures.
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Important relationships D. Neuffer

»Muon Lifetime: »Bending Radius
«2.2 vy us =0.0208 E (TeV) s
e 0104 s at5 TeV R=Bp=P(GeV/c)m=P(TeV/c)km
B  0.3B(T) 0.3B(T)

»Path Length

*660 By m -> 6250 E (TeV) km
Py ( ) >Rapid Cycling Synchrotron [ |
. Btyp = ~1 -5 T, 15- 60 HZ I B, :DC B,;,W.: pulsed from -B,,;, to + B,;, |

Hybrid — High field + pulsed J— O S vtz i,
Number of Turns (ring) . Example:
Bmax=8T Bpuisea=2.0, f= 0.25
> 3.5/ 05pT Bave = meax " (1 - f)Bpulsed

660P 0.3B
path length . U 0.3 ave ~ 300Bave turns

circumference m, 271'Pﬂ

In 2.2y us

* (luminosity lifetime/pathlength a factor
of 2 less because both u decay) 18
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Bending, Accelerating fields: . neuffer

»Conventional (Ferric)
o~ 2T

»Superconducting —NbTi
Tevatron ~4 T
LHC~8 T
»Superconducting Nb;Sn
*HL-LHC + > 16T

»HTS superconductor ...
‘REBCO2>40T ?

»Pulsed magnets
12T >+4T ??~200T/s

e 20T/s HTS record
- Piekarz et al. NIM A 943, 162490 (2019)

»SRF accelerating fields
*17 MV/m (650 MHz PIP-Il)
30 MV/m (1300 MHz SLS-2)

»Future upgrades
*40 - 50 MV/m -> 807?7?

»Pulsed rf — Cu 2> ??
e 50 2 100 MV /m

19



4/14/21

5

~4 TeV (2 x 2) Muon Collider (~2005)

Muon Collider
> Muon Collider Conceptual Layout
*2 TeV ring (~8T magnets)

‘RLA accelerator
e ~18 turns
2km linacs -50 GeV each

~30 MV/m rf
Arcs are ~8T magnets each

»Not quite site filler
*Easily expand to 2.5x2.5
(5 TeV)

»Double gradients, B, .,
*“10 TeV (5x5)—- (16 T — 60 MV/m)

D. Neuffer
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Summary

* Many benefits by improving final cooling channel
o Most radiological issues will be mitigated
o Beam design becomes more realistic

 Variable goal COM and Luminosity
o Depends on available magnetic field strength and RF gradients
o COM 5 TeV Collider is relatively accessible goal (D. Neuffer)

o COM 10 TeV is a stretch goal (D. Neuffer)
= Require 16 T dipoles, +/- 4 T rapid cycling, SRF 60 MV/m
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